
QMKPy
Release 1.2.0

Karl-Ludwig Besser

Oct 25, 2022

CONTENTS:

1 Installation 3

2 Getting Started 5
2.1 Basic Usage . 5
2.2 Saving a Problem Instance . 5
2.3 Loading a Saved QMKProblem Instance . 6

3 Code Conventions 7
3.1 Basic Arrays . 7
3.2 Argument Order . 8
3.3 Alternative Representation of the Assignment Matrix . 8

4 Implementing a Novel Algorithm 9
4.1 Example . 9
4.2 Contributing a New Algorithm to the Package . 10

5 Datasets 11
5.1 Research Paper Repository . 11

6 qmkpy package 13
6.1 Submodules . 13
6.2 Module contents . 27

7 References 33

8 Indices and tables 35

Bibliography 37

Python Module Index 39

Index 41

i

ii

QMKPy, Release 1.2.0

QMKPy is a Python library for modeling and solving quadratic multiple knapsack problems (QMKP). It provides a
framework that allows quickly implementing and testing novel algorithms to solve the QMKP. It is therefore primarily
targeting researchers working in the area of operations research/optimization.

Additionally, it can be used to easily generate datasets of QMKP instances which can be used as reference test set to
fairly compare different algorithms.

The QMKP is an assignment problem where 𝑁 ∈ N items are assigned to 𝐾 ∈ N knapsacks such that an overall profit
is maximized. The exact formulation of the QMKP that can be solved by this package is given as follows

max
∑︁
𝑢∈𝒦

(︃ ∑︁
𝑖∈𝒜(𝑢)

𝑝𝑖 +
∑︁

𝑗∈𝒜(𝑢)
𝑗 ̸=𝑖

𝑝𝑖𝑗

)︃
(1)

s.t.
∑︁

𝑖∈𝒜(𝑢)

𝑤𝑖 ≤ 𝑐𝑢 ∀𝑢 ∈ 𝒦 (2)

𝐾∑︁
𝑢=1

𝑎𝑖𝑢 ≤ 1 ∀𝑖 ∈ {1, 2, . . . , 𝑁} (3)

where 𝒦 = {1, 2, . . . ,𝐾} describes the set of 𝐾 knapsacks, 𝒜(𝑢) is the set of items that are assigned to knapsack 𝑢,
and 𝑎𝑖𝑢 ∈ {0, 1} is the indicator whether item 𝑖 is assigned to knapsack 𝑢. Each item 𝑖 has the weight 𝑤𝑖 ∈ R+ and
knapsack 𝑢 has the weight capacity 𝑐𝑢 ∈ R+. When assigning item 𝑖 to a knapsack, it yields the non-negative profit
𝑝𝑖 ∈ R+. When assigning item 𝑗 (with 𝑗 ̸= 𝑖) to the same knapsack, the additional (joint) profit 𝑝𝑖𝑗 ∈ R+ is obtained.

The objective of the above optimization problem is to maximize the total profit such that each item is assigned to at
most one knapsack and such that the weight capacity constraints of the knapsacks are not violated.

Remark: The profits 𝑝 are also referred to as “values” in the literature.

A detailed description of the way how the mathematical components of the QMKP are implemented in the qmkpy
framework can be found in the code conventions page.

For a basic overview on knapsack problems, see [KPP04].

CONTENTS: 1

conventions.html#basic-arrays

QMKPy, Release 1.2.0

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

The easiest way to install the package is by using pip

pip3 install qmkpy

You can also install the latest version from the Github repository

git clone https://github.com/klb2/qmkpy
cd qmkpy
pip3 install -r requirements.txt
pip3 install .

3

QMKPy, Release 1.2.0

4 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

In the following, a few simple examples are shown.

2.1 Basic Usage

The following script contains an example in which a QMKP is defined and solved by the implemented constructive
procedure.

Listing 1: Defining and Solving a QMKP

1 import numpy as np
2 from qmkpy import total_profit_qmkp, QMKProblem
3 from qmkpy import algorithms
4

5 weights = [5, 2, 3, 4] # four items
6 capacities = [10, 5, 12, 4, 2] # five knapsacks
7 profits = np.array([[3, 1, 0, 2],
8 [1, 1, 1, 4],
9 [0, 1, 2, 2],

10 [2, 4, 2, 3]]) # symmetric profit matrix
11

12 qmkp = QMKProblem(profits, weights, capacities)
13 qmkp.algorithm = algorithms.constructive_procedure
14 assignments, total_profit = qmkp.solve()
15

16 print(assignments)
17 print(total_profit)

2.2 Saving a Problem Instance

It is possible to save a problem instance of a QMKP. This can be useful to share examples as a benchmark dataset to
compare different algorithms.

Listing 2: Saving a QMKProblem Instance

1 import numpy as np
2 from qmkpy import QMKProblem
3

(continues on next page)

5

QMKPy, Release 1.2.0

(continued from previous page)

4 weights = [5, 2, 3, 4] # four items
5 capacities = [10, 5, 12, 4, 2] # five knapsacks
6 profits = np.array([[3, 1, 0, 2],
7 [1, 1, 1, 4],
8 [0, 1, 2, 2],
9 [2, 4, 2, 3]]) # symmetric profit matrix

10

11 qmkp = QMKProblem(profits, weights, capacities)
12

13 # Save the problem instance using the Numpy npz format
14 qmkp.save("my_problem.npz", strategy="numpy")

2.3 Loading a Saved QMKProblem Instance

You can also load a previously saved QMKProblem instance to get a qmkpy.QMKProblem object with the same profits,
weights and weight capacities.

Listing 3: Loading a Saved QMKProblem

1 from qmkpy import QMKProblem
2

3 saved_problem = "my_problem.npz" # saved model file
4 qmkp = QMKProblem.load(saved_problem, strategy="numpy")

6 Chapter 2. Getting Started

CHAPTER

THREE

CODE CONVENTIONS

The code in the library follows some conventions, which are specified in the following. We assume that there are 𝑁
items and 𝐾 knapsacks.

3.1 Basic Arrays

In the following, we will discuss the essential elements of the QMKP and their implementation in the qmkpy framework.

3.1.1 Mathematical Description

The four essential components of the QMKP are the following.

Profit matrix 𝑃 ∈ R𝑁×𝑁
+

This symmetric matrix contains the profit values 𝑝𝑖 on the main diagonal and the joint profit values 𝑝𝑖𝑗 as the
other elements.

Weights 𝑤 ∈ R𝑁
+

This vector contains the weights of the items, where the 𝑖-th component 𝑤𝑖 corresponds to the weight of item 𝑖.

Capacities 𝑐 ∈ R𝐾
+

This vector contains the capacities of the knapsacks, where the 𝑖-th component 𝑐𝑖 corresponds to the capacity of
knapsack 𝑖.

Assignments 𝒜 = {𝒜1,𝒜2, . . . ,𝒜𝐾} with 𝒜𝑖 ⊆ {1, 2, . . . , 𝑁}
The assignments of items to knapsacks are collected in the set𝒜. It contains the individual sets𝒜𝑖 which contains
the indices of all items that are assigned to knapsack 𝑖.

3.1.2 Implementation

The three main components described above are implemented in qmkpy as arrays. The details are as follows.

profits
The profit matrix is implemented as an array of size [N, N] which represents the symmetric 𝑁 × 𝑁 matrix
𝑃 . We have that the profits of the individual items 𝑝𝑖 are placed on the main diagonal profits[i-1, i-1] =
p_i and the joint profits 𝑝𝑖𝑗 make up the other elements as profits[i-1, j-1] = profits[j-1, i-1] =
p_{ij}. (The -1 index shift is due to Python’s 0-based indexing.)

weights
The weight vector is implemented as a list of length N, where the weight 𝑤𝑖 corresponds to the index i-1, i.e.,
weights[i-1] = w_i.

7

QMKPy, Release 1.2.0

capacities
The capacities vector is implemented as a list of length K, where the capacity 𝑐𝑖 corresponds to the index i-1,
i.e., capacities[i-1] = c_i.

assignments
There are multiple ways of representing the assignment of items to knapsacks. For all algorithms, the binary
representation is used to represent the solution to a QMKP. In this, the assignments 𝒜 are represented by a
binary array of size [N, K] where row 𝑖 stands for item 𝑖 and column 𝑢 represents knapsack 𝑢. Thus, ele-
ment assignments[i-1, u-1] = 1, if item 𝑖 is assigned to knapsack 𝑢 and assignments[i-1, u-1] = 0
otherwise.

3.2 Argument Order

Functions that work on a QMKP always assume the argument order profits, weights, capacities and they are
expected to return assignments in the binary form described above.

So if you want to write a function that solves a QMKP, the argument list of your function needs to start with this. More
details on this can also be found on the Implementing a Novel Algorithm page.

3.3 Alternative Representation of the Assignment Matrix

There are multiple ways of representing the final solution to a QMKP. Essentially, we need to represent the assignment
of the items to the knapsacks.

Besides the binary representation of the algorithms, which is described above, another popular representation is the
chromosome form 𝐶 ∈ {0, 1, . . . ,𝐾}𝑁 which is a vector of length 𝑁 , where the value of entry 𝑖 specifies the knap-
sack to which item 𝑖 is assigned. If the item is not assigned to any knapsack, the value 0 is used. In the qmkpy
framework, this is implemented such that chromosome is a list of length N, where index i-1 represents item 𝑖, i.e.,
chromosome[i-1] = u-1 indicates that item 𝑖 is assigned to knapsack 𝑢. If item 𝑖 is not assigned to any knapsack,
we have chromosome[i-1] = -1.

While the binary representation is dominantly used in this library, there exist functions to convert the to representations
(see qmkpy.util.assignment_from_chromosome() and qmkpy.util.chromosome_from_assignment()).

8 Chapter 3. Code Conventions

developing.html

CHAPTER

FOUR

IMPLEMENTING A NOVEL ALGORITHM

Note: TL;DR: Your function needs to be callable as: func(profits, weights, capacities, *args) and needs
to return assignments in the binary form.

If you want to implement and test a novel solution algorithm for the QMKP, you simply need to write a Python function
that takes profits as first argument, weights as second, and capacities as third argument. Beyond that, it can have
an arbitrary number of additional arguments. However, it needs to be possible to pass them positionally.

The return of the function needs to be the assignment matrix in binary form.

The following example is also illustrated in a Jupyter notebook that you can either run locally or using an online service
like Binder.

4.1 Example

As an example, we want to implement the following algorithm

Assign the item 𝑖 with the smallest weight 𝑤𝑖 to the first knapsack 𝑘 where it fits, i.e., where 𝑐𝑘 ≥ 𝑤𝑖.

Obviously, this algorithm ignores the profits and will not yield very good results. However, it only serves demonstration
purposes.

4.1.1 Algorithm Implementation

The above algorithm could be implemented as follows

Listing 1: Example Algorithm

1 def example_algorithm(profits, weights, capacities):
2 assignments = np.zeros((len(weights), len(capacities)))
3 remaining_capacities = np.copy(capacities)
4 items_by_weight = np.argsort(weights)
5 for _item in items_by_weight:
6 _weight = weights[_item]
7 _first_ks = np.argmax(remaining_capacities >= _weight)
8 assignments[_item, _first_ks] = 1
9 remaining_capacities[_first_ks] -= _weight

10 return assignments

9

https://github.com/klb2/qmkpy/blob/master/examples/Custom%20Algorithm.ipynb
https://mybinder.org/
https://mybinder.org/v2/gh/klb2/qmkpy/HEAD?labpath=examples%2FCustom%20Algorithm.ipynb

QMKPy, Release 1.2.0

It should be emphasized that you should not modify any of the input arrays, e.g., capacities inplace, since this could
lead to unintended consequences.

4.1.2 Using the Algorithm

The newly implemented algorithm can then easily be used as follows.

Listing 2: Testing the Novel Algorithm

1 import numpy as np
2 from qmkpy import total_profit_qmkp, QMKProblem
3 from qmkpy import algorithms
4

5 weights = [5, 2, 3, 4] # four items
6 capacities = [1, 5, 5, 6, 2] # five knapsacks
7 profits = np.array([[3, 1, 0, 2],
8 [1, 1, 1, 4],
9 [0, 1, 2, 2],

10 [2, 4, 2, 3]]) # symmetric profit matrix
11

12 qmkp = QMKProblem(profits, weights, capacities)
13 qmkp.algorithm = example_algorithm
14 assignments, total_profit = qmkp.solve()
15

16 print(assignments)
17 print(total_profit)

4.2 Contributing a New Algorithm to the Package

When you feel that your algorithm should be added to the QMKPy package, please follow the following steps:

1. Place your code in the qmkpy.algorithms module, i.e., in the qmkpy/algorithms.py file.

2. Make sure that you added documentation in form of a docstring. This should also include possible references to
literature, if the algorithm is taken from any published work.

3. Make sure that all unit tests pass. In order to do this, add your algorithm to the SOLVERS list in
the test file tests/test_algorithms.py. Additionally, you should create a new test file tests/
test_algorithm_<your_algo>.py which includes tests that are specific to your algorithm, e.g., testing dif-
ferent parameter constellations. You can run all tests using the pytest command.

10 Chapter 4. Implementing a Novel Algorithm

CHAPTER

FIVE

DATASETS

One of the major benefits of this package is the possibility to quickly and easily generate datasets of reference problems
and test your algorithms against (existing) datasets.

Especially when benchmarking your novel algorithm against commonly used reference datasets, this will allow a simple
reproducibility. A collection of some reference datasets can be found at https://github.com/klb2/qmkpy-datasets.

In the following, an example of how a repository for a research paper could look like, is presented.

5.1 Research Paper Repository

The file structure can be as simple as shown in the following.

project
dataset/

problem1.txt
problem2.txt
...

my_algorithm.py

The directory dataset/ contains all problem instances of the reference dataset, which are saved by one of the functions
in qmkpy.io.

The file my_algorithm.py contains the implementation of your algorithm. It could look something like the following.
Details on how to implement new algorithms can also be found on the Implementing a Novel Algorithm page.

1 import os
2 import numpy as np
3 import qmkpy
4

5 def my_algorithm(profits, weights, capacities):
6 # DOING SOME STUFF
7 return assignments
8

9 def main():
10 results = []
11 for root, dirnames, filenames in os.walk("dataset"):
12 for problem in filenames:
13 qmkp = qmkpy.QMKProblem.load(problem, strategy="txt")
14 qmkp.algorithm = my_algorithm
15 solution, profit = qmkp.solve()

(continues on next page)

11

https://github.com/klb2/qmkpy-datasets
developing.html

QMKPy, Release 1.2.0

(continued from previous page)

16 results.append(profit)
17 print(f"Average profit: {np.mean(results):.2f}")
18

19 if __name__ == "__main__":
20 main()

This simple script solves all problems of the dataset using your algorithm and prints the average total profit at the end.

12 Chapter 5. Datasets

CHAPTER

SIX

QMKPY PACKAGE

6.1 Submodules

6.1.1 qmkpy.algorithms module

Solution algorithms for the QMKP.

This module contains all the algorithms that can be used to solve the quadratic multiple knapsack problem (QMKP).

qmkpy.algorithms.constructive_procedure(profits: array, weights: Iterable[float], capacities:
Iterable[float], starting_assignment: Optional[array] = None)
→ array

Constructive procedure that completes a starting assignment

This constructive procedure is based on Algorithm 1 from [AGH22] and the greedy heuristic in [HJ06]. It is a
greedy algorithm that completes a partial solution of the QMKP.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 .

• weights (list of float) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• capacities (list of float) – Capacities of the knapsacks. The number of knapsacks 𝐾
is determined as K=len(capacities).

• starting_assignments (np.array, optional) – Binary matrix of size 𝑁 ×𝐾 which rep-
resents existing starting assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned
to knapsack 𝑗. These assignments are not modified and will only be completed. If it is None,
no existing assignment is assumed.

Returns
assignments – Binary matrix of size 𝑁 ×𝐾 which represents the final assignments of items to
knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Return type
np.array

Raises
ValueError – Raises a ValueError if the starting assignment is infeasible.

qmkpy.algorithms.fcs_procedure(profits: array, weights: Iterable[float], capacities: Iterable[float], alpha:
Optional[float] = None, len_history: int = 50)→ array

Implementation of the fix and complete solution (FCS) procedure

13

QMKPy, Release 1.2.0

This fix and complete solution (FCS) procedure is based on Algorithm 2 from [AGH22]. It is basically a stochas-
tic hill-climber wrapper around the constructive procedure constructive_procedure() (also see [HJ06]).

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 .

• weights (list of float) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• capacities (list of float) – Capacities of the knapsacks. The number of knapsacks 𝐾
is determined as K=len(capacities).

• alpha (float, optional) – Float between 0 and 1 that indicates the ratio of assignments that
should be dropped in an iteration. If not provided, a uniformly random value is chosen.

• len_history (int, optional) – Number of consecutive iterations without any improvement
before the algorithm terminates.

Returns
assignments – Binary matrix of size 𝑁 ×𝐾 which represents the final assignments of items to
knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Return type
np.array

qmkpy.algorithms.random_assignment(profits: array, weights: Iterable[float], capacities: Iterable[float])→
array

Generate a random (feasible) assignment

This function generates a random feasible solution to the specified QMKP. The algorithm works as follows

1. Generate a random permutation of the items

2. For each item 𝑖 do

1. Determine the possible knapsacks 𝒦𝑖 that could support the item

2. Random and uniformly select a choice from 𝒦𝑖 ∪ {skip}.

This way, a feasible solution is generated without the guarantee that every item is assigned (even if it could still
be assigned).

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 . The profit of the single items 𝑝𝑖 corresponds to the main diagonal elements, i.e.,
𝑝𝑖 = 𝑝𝑖𝑖.

• weights (list) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• capacities (list) – Capacities of the knapsacks. The number of knapsacks 𝐾 is deter-
mined as K=len(capacities).

Returns
assignments – Binary matrix of size 𝑁 ×𝐾 which represents the final assignments of items to
knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Return type
np.array

qmkpy.algorithms.round_robin(profits: array, weights: Iterable[float], capacities: Iterable[float],
starting_assignment: Optional[array] = None, order_ks:
Optional[Iterable[int]] = None)→ array

14 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

Simple round-robin algorithm

This algorithm follows a simple round-robin scheme to assign items to knapsacks. The knapsacks are iterated
in the order provided by order_ks. In each round, the current knapsack selects the item with the highest value
density that still fits in the knapsack.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 .

• weights (list of float) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• capacities (list of float) – Capacities of the knapsacks. The number of knapsacks 𝐾
is determined as K=len(capacities).

• starting_assignments (np.array, optional) – Binary matrix of size 𝑁 ×𝐾 which rep-
resents existing starting assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned
to knapsack 𝑗. These assignments are not modified and will only be completed. If it is None,
no existing assignment is assumed.

• order_ks (list of int, optional) – Order in which the knapsacks select the items. If none
is given, they are iterated by index, i.e., order_ks = range(num_ks).

Returns
assignments – Binary matrix of size 𝑁 ×𝐾 which represents the final assignments of items to
knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Return type
np.array

6.1.2 qmkpy.checks module

Various checks/verification functions.

This module contains various functions to perform check/verify provided parameters in the context of the QMKP. For
example, this includes a check whether a provided assignment complies with the weight/capacity constraints.

qmkpy.checks.check_dimensions(profits: array, weights: Optional[Iterable[float]] = None)→ NoReturn
Simple check whether the dimensions of the parameters match.

This function checks that

1. The profit matrix is quadratic of size 𝑁 ,

2. The number of items is equal to 𝑁 , i.e., len(weights)==N.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 ×𝑁 containing the profits 𝑝𝑖𝑗 .

• weights (list of float, optional) – List which contains the weights of the 𝑁 items.

Raises
ValueError – This function raises a ValueError, if there is a mismatch.

qmkpy.checks.is_binary(x: Iterable[float])→ bool
Check whether a provided array is binary

This function checks that all elements of the input are either 0 or 1.

6.1. Submodules 15

QMKPy, Release 1.2.0

Parameters
x (Iterable) – Array of numbers

Returns
binary – Returns True when the array x is binary and False otherwise.

Return type
bool

qmkpy.checks.is_feasible_solution(assignments: array, profits: array, weights: Iterable[float], capacities:
Iterable[float], raise_error: bool = False)→ bool

Check whether a provided assignment is a feasible solution.

This function performs a formal check whether the provided assignments is a feasible solution of the specified
QMKProblem. This means that the shapes of the arrays match and that no weight capacity constraint is violated.

Parameters

• assignments (np.array) – Binary matrix of size 𝑁 × 𝐾 which represents the final as-
signments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 . The profit of the single items 𝑝𝑖 corresponds to the main diagonal elements, i.e.,
𝑝𝑖 = 𝑝𝑖𝑖.

• weights (list) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• capacities (list) – Capacities of the knapsacks. The number of knapsacks 𝐾 is deter-
mined as K=len(capacities).

• raise_error (bool, optional) – If raise_error is False, the function returns a bool,
that states whether the solution is feasible. If raise_error is True, the function raises a
ValueError instead.

Returns
Indication if the solution is feasible (True) or not (False)

Return type
bool

Raises
ValueError – This is only raised when raise_error is True.

qmkpy.checks.is_symmetric_profits(profits: array, raise_error: bool = False)→ bool
Check whether the profit matrix is symmetric.

This function performs a check whether the profit matrix 𝑃 is symmetric. This is expected for the QMKP.

By default, the function returns True if the matrix is symmetric and False otherwise. When raise_error is
set to True, a ValueError is raised instead.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 . The profit of the single items 𝑝𝑖 corresponds to the main diagonal elements, i.e.,
𝑝𝑖 = 𝑝𝑖𝑖.

• raise_error (bool, optional) – If raise_error is False, the function returns a bool,
that states whether the solution is feasible. If raise_error is True, the function raises a
ValueError instead.

Returns
Indication if the solution is feasible (True) or not (False)

16 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

Return type
bool

Raises
ValueError – This is raised when raise_error is True and the matrix is not symmetric. It
can also be raised when the provided profits is not a square matrix.

6.1.3 qmkpy.io module

Input/Output functions.

This module contains functions to save and load QMKP instances.

qmkpy.io.load_problem_json(fname: str)
Load a previously stored QMKProblem instance from the JSON format

This function allows loading a QMKProblem from a .json file, which was created by the qmkpy.io.
save_problem_json() method.

See also:

qmkpy.io.save_problem_json()
For saving a model in the JSON format.

Parameters
fname (str or PathLike) – Filepath of the saved model

Returns
problem – Loaded problem instance

Return type
qmkpy.QMKProblem

qmkpy.io.load_problem_numpy(fname: str)
Load a previously stored QMKProblem instance from the Numpy format

This function allows loading a QMKProblem from a compressed .npz file, which was created by the qmkpy.
io.save_problem_numpy() method.

See also:

qmkpy.io.save_problem_numpy()
For saving a model in the Numpy format.

numpy.load()
For details on loading the .npz format.

Parameters
fname (str or PathLike) – Filepath of the saved model

Returns
problem – Loaded problem instance

Return type
qmkpy.QMKProblem

6.1. Submodules 17

QMKPy, Release 1.2.0

qmkpy.io.load_problem_pickle(fname: Union[str, bytes, PathLike])
Load a previously stored QMKProblem instance from the Pickle format

This function allows loading a QMKProblem object from a Python pickled object file.

Caution: All warnings as for the regular pickle.load() apply!

See also:

qmkpy.io.save_problem_pickle()
For saving a model in the Pickle format.

pickle.load()
For details on loading a pickled object.

Parameters
fname (str or PathLike) – Filepath of the saved model

Returns
problem – Loaded problem instance

Return type
qmkpy.QMKProblem

qmkpy.io.load_problem_txt(fname: Union[str, bytes, PathLike], sep: str = '\t')
Load a previously stored QMKProblem instance from the text format

This function loads a QMKProblem instance from a text file according to the format specified in qmkpy.io.
save_problem_txt().

See also:

qmkpy.io.save_problem_txt()
For saving a model in the text format.

Parameters

• fname (str or PathLike) – Filepath of the saved model

• sep (str) – Separator string that is used to separate the numbers in the file.

Returns
problem – Loaded problem instance

Return type
qmkpy.QMKProblem

qmkpy.io.save_problem_json(fname: Union[str, bytes, PathLike], problem, name: Optional[str] = None)
Save a QMKProblem as a JSON file

Save a QMKProblem instance using the JavaScript Object Notation (JSON) format. This only saves the
problem.profits, problem.weights and problem.capacities arrays, and the problem.name attribute
if it is set.

See also:

load_problem_json()
For loading a saved model.

Parameters

18 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

• fname (str or PathLike) – Filepath of the model to be saved at

• problem (qmkpy.QMKProblem) – Problem instance to be saved

• name (str ,optional) – Optional name of the problem that is used as the first line of the
output file. If it is None, it will first be checked whether the attribute problem.name is set. If
this is also None, the name defaults to qmkp_{num_items:d}_{num_ks:d}_{np.random.
randint(0, 1000):03d}.

Return type
None

qmkpy.io.save_problem_numpy(fname: Union[str, bytes, PathLike], problem)
Save a QMKProblem using Numpys npz format

Save a QMKProblem instance using the compressed npz format. This only saves the problem.profits,
problem.weights, and problem.capacities arrays.

See also:

load_problem_numpy()
For loading a saved model.

numpy.savez_compressed()
For details on the .npz format.

Parameters

• fname (str or PathLike) – Filepath of the model to be saved at

• problem (qmkpy.QMKProblem) – Problem instance to be saved

Return type
None

qmkpy.io.save_problem_pickle(fname: Union[str, bytes, PathLike], problem)
Save a QMKProblem using the Python Pickle format

Save a QMKProblem object using the Python pickle library. By this, the whole object is stored in a binary format.

See also:

qmkpy.io.load_problem_pickle()
For loading a saved model.

pickle.dump()
For details on the underlying pickling function.

Parameters

• fname (str or PathLike) – Filepath of the model to be saved at

• problem (qmkpy.QMKProblem) – Problem instance to be saved

Return type
None

6.1. Submodules 19

QMKPy, Release 1.2.0

qmkpy.io.save_problem_txt(fname: Union[str, bytes, PathLike], qmkp, sep: str = '\t', name: Optional[str] =
None)

Save a QMKProblem instance in text form

Save a QMKProblem instance in text form inspired by the format established by Alain Billionnet and Eric Soutif
for the regular QKP. The original description can be found at https://cedric.cnam.fr/~soutif/QKP/format.html.

The file format is as follows:

1. The first line provides a name/reference of the problem

2. The second line specifies the number of items

3. The third line specifies the number of knapsacks

4. The fourth line is blank to separate the meta information from the rest

5. The fifth line contains the linear profits (main diagonal elements of the profit matrix) separated by sep.

6. The next lines contain the upper triangular part of the profit matrix (i.e., 𝑝𝑖𝑗).

7. Blank line separating profits from the rest

8. Weights 𝑤𝑖 of the items, separated by sep.

9. Blank line separating weights and capacities

10. Capacities 𝑐𝑢 of the knapsacks, separated by sep.

For the example with parameters

𝑃 =

⎛⎝1 2 3
2 4 5
3 5 6

⎞⎠ , 𝑤 =

⎛⎝10
20
30

⎞⎠ , 𝑐 =

⎛⎜⎜⎜⎜⎝
5
8
1
9
2

⎞⎟⎟⎟⎟⎠
the output-file looks as follows

Name of the Problem
3
5

1 4 6
2 3
5

10 20 30

5 8 1 9 2

See also:

qmkpy.io.load_problem_txt()
For loading a saved model.

Parameters

• fname (str or PathLike) – Filepath of the model to be saved at

• problem (qmkpy.QMKProblem) – Problem instance to be saved

20 Chapter 6. qmkpy package

https://cedric.cnam.fr/~soutif/QKP/format.html

QMKPy, Release 1.2.0

• sep (str) – Separator string that is used to separate the numbers in the file.

• name (str ,optional) – Optional name of the problem that is used as the first line of the
output file. If it is None, it will first be checked whether the attribute problem.name is set. If
this is also None, the name defaults to qmkp_{num_items:d}_{num_ks:d}_{np.random.
randint(0, 1000):03d}.

Return type
None

6.1.4 qmkpy.qmkp module

General definitions of the quadratic multiple knapsack problem.

This module contains the basic implementation of the quadratic multiple knapsack problem (QMKP). In particular,
this includes the base class QMKProblem .

class qmkpy.qmkp.QMKProblem(profits: Union[array, Iterable[Iterable]], weights: Iterable[float], capacities:
Iterable[float], algorithm: Optional[Callable] = None, args: Optional[tuple] =
None, assignments: Optional[array] = None, name: Optional[str] = None)

Bases: object

Base class to represent a quadratic multiple knapsack problem.

This class defines a standard QMKP with 𝑁 items and 𝐾 knapsacks.

profits

Symmetric matrix of size 𝑁 ×𝑁 that contains the (joint) profit values 𝑝𝑖𝑗 . The profit of the single items
𝑝𝑖 corresponds to the main diagonal elements, i.e., 𝑝𝑖 = 𝑝𝑖𝑖.

Type
np.array

weights

List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

Type
list of float

capacities

Capacities of the knapsacks. The number of knapsacks 𝐾 is determined as K=len(capacities).

Type
list of float

algorithm

Function that is used to solve the QMKP. It needs to follow the argument order algorithm(profits,
weights, capacities, ...).

Type
Callable, optional

args

Optional tuple of additional arguments that are passed to algorithm .

Type
tuple, optional

6.1. Submodules 21

QMKPy, Release 1.2.0

assignments

Binary matrix of size 𝑁 × 𝐾 which represents the final assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1,
element 𝑖 is assigned to knapsack 𝑗. This attribute is overwritten when calling solve().

Type
np.array, optional

name

Optional name of the problem instance

Type
str, optional

classmethod load(fname: str, strategy: str = 'numpy')
Load a QMKProblem instance

This functions allows loading a previously saved QMKProblem instance. The save() method provides a
way of saving a problem.

See also:

save()
Method to save a QMKProblem instance which can then be loaded.

Parameters

• fname (str) – Filepath of the saved model

• strategy (str) – Strategy that is used to store the model. Valid choices are (case-
insensitive):

– numpy: Save the individual arrays of the model using the np.savez_compressed()
function.

– pickle: Save the whole object using Pythons pickle module

– txt: Save the arrays of the model using the text-based format established by Billionnet
and Soutif.

– json: Save the arrays of the model using the JSON format.

Returns
problem – Loaded problem instance

Return type
QMKProblem

save(fname: Union[str, bytes, PathLike], strategy: str = 'numpy')→ NoReturn
Save the QMKP instance

Save the profits, weights, and capacities of the problem. There exist different strategies that are explained
in the strategy parameter.

See also:

load()
For loading a saved model.

Parameters

• fname (str or PathLike) – Filepath of the model to be saved at

22 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

• strategy (str) – Strategy that is used to store the model. Valid choices are (case-
insensitive):

– numpy: Save the individual arrays of the model using the np.savez_compressed()
function. See also qmkpy.io.save_problem_numpy().

– pickle: Save the whole object using Pythons pickle module. See also qmkpy.io.
save_problem_pickle().

– txt: Save the arrays of the model using the text-based format established by Billionnet
and Soutif. See also qmkpy.io.save_problem_txt().

– json: Save the arrays of the model using the JSON format.

Return type
None

solve(algorithm: Optional[Callable] = None, args: Optional[tuple] = None)→ Tuple[array, float]
Solve the QMKP

Solve the QMKP using algorithm. This function both returns the optimal assignment and the total result-
ing profit. This method also automatically sets the solution to the object’s attribute assignments.

Parameters

• algorithm (Callable, optional) – Function that is used to solve the QMKP. It needs to
follow the argument order algorithm(profits, weights, capacities, ...). If it
is None, the object attribute algorithm is used.

• args (tuple, optional) – Optional tuple of additional arguments that are passed to
algorithm. If it is None, the object attribute args is used.

Returns

• assignments (np.array) – Binary matrix of size 𝑁 × 𝐾 which represents the final as-
signments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

• total_profit (float) – Final total profit for the found solution.

qmkpy.qmkp.total_profit_qmkp(profits: array, assignments: array)→ float
Calculate the total profit for given assignments.

This function calculates the total profit of a QMKP for a given profit matrix 𝑃 and assignments 𝒜 as

𝐾∑︁
𝑢=1

⎛⎜⎜⎝∑︁
𝑖∈𝒜𝑢

𝑝𝑖 +
∑︁
𝑗∈𝒜𝑢
𝑗 ̸=𝑖

𝑝𝑖𝑗

⎞⎟⎟⎠
where 𝒜𝑢 is the set of items that are assigned to knapsack 𝑢.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 . The profit of the single items 𝑝𝑖 corresponds to the main diagonal elements, i.e.,
𝑝𝑖 = 𝑝𝑖𝑖.

• assignments (np.array) – Binary matrix of size 𝑁 × 𝐾 which represents the final as-
signments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Returns
Value of the total profit

6.1. Submodules 23

QMKPy, Release 1.2.0

Return type
float

6.1.5 qmkpy.util module

Utility functions.

This module contains various utility functions, e.g., the conversion from the binary assignment matrix to the chromo-
some form.

qmkpy.util.assignment_from_chromosome(chromosome: Iterable[int], num_ks: int)→ array
Return the assignment matrix from a chromosome

Return the binary assignment matrix that corresponds to the chromosome. For more details about the connection
between assignment matrix and chromosome check chromosome_from_assignment().

See also:

chromosome_from_assignment()
For more details on the connection between assignment matrix and chromosome.

Parameters

• chromosome (np.array or list of int) – Chromosome version of assignments, which
is a list of length 𝑁 where 𝑐𝑖 = 𝑘 means that item 𝑖 is assigned to knapsack 𝑘. If the item is
not assigned, we set 𝑐𝑖 = −1.

• num_ks (int) – Number of knapsacks 𝐾.

Returns
assignments – Binary matrix of size 𝑁 ×𝐾 which represents the final assignments of items to
knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Return type
np.array

qmkpy.util.chromosome_from_assignment(assignments: array)→ Iterable[int]
Return the chromosome from an assignment matrix

The chromosome version of assignments is a list of length 𝑁 where 𝑐𝑖 = 𝑘 means that item 𝑖 is assigned to
knapsack 𝑘. If the item is not assigned, we set 𝑐𝑖 = −1.

Example

Assume that we have 4 items and 3 knapsacks. Let Items 1 and 4 be assigned to Knapsack 1, Item 2 is assigned
to Knapsack 3 and Item 3 is not assigned. In the binary representation, this is

𝐴 =

⎛⎜⎜⎝
1 0 0
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎠
The corresponding chromosome is

𝐶(𝐴) =
(︀
1 3 0 1

)︀
However, in the 0-index based representation in Python, this function will return

24 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

chromosome_from_assignment(A) = [0, 2, -1, 0]

as the chromosome.

Parameters
assignments (np.array) – Binary matrix of size𝑁×𝐾 which represents the final assignments
of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Returns
chromosome – Chromosome version of assignments, which is a list of length 𝑁 where 𝑐𝑖 = 𝑘
means that item 𝑖 is assigned to knapsack 𝑘. If the item is not assigned, we set 𝑐𝑖 = −1.

Return type
np.array

qmkpy.util.get_empty_knapsacks(assignments: Union[array, Iterable[int]], num_ks: Optional[int] = None)
→ Iterable[int]

Return the list of empty knapsacks

Return the list of empty knapsacks (as their indices) from a given assignment. An empty knapsack is one without
any assigned item. The assignments can be either in the binary matrix form or in the chromosome form. If the
chromosome form is used, the total number of knapsacks needs to be additionally provided.

Parameters

• assignments (np.array or list of int) – Either a binary matrix of size 𝑁 ×𝐾 which
represents the assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knap-
sack 𝑗. Or assignments in the chromosome form, which is a list of length 𝑁 where 𝑐𝑖 = 𝑘
means that item 𝑖 is assigned to knapsack 𝑘. If the item is not assigned, we set 𝑐𝑖 = −1.

• num_ks (int (optional)) – Total number 𝐾 of knapsacks. This only needs to provided,
if the assignments are given in the chromosome form.

Returns
empty_ks – List of the indices of the empty knapsacks.

Return type
list of int

qmkpy.util.get_remaining_capacities(weights: Iterable[float], capacities: Iterable[float], assignments:
Union[array, Iterable[int]])

Return the remaining weight capacities of the knapsacks

Returns the remaining weight capacities of the knapsacks for given assignments. The function does not raise an
error when a weight constraint is violated but will return a negative remaining capacity in this case.

Parameters

• weights (list of float) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• capacities (list of float) – Capacities of the knapsacks. The number of knapsacks 𝐾
is determined as K=len(capacities).

• assignments (np.array or list of int) – Either a binary matrix of size 𝑁 ×𝐾 which
represents the assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knap-
sack 𝑗. Or assignments in the chromosome form, which is a list of length 𝑁 where 𝑐𝑖 = 𝑘
means that item 𝑖 is assigned to knapsack 𝑘. If the item is not assigned, we set 𝑐𝑖 = −1.

Returns
remaining_capacities – List of the remaining capacities. Can be negative, if a knapsack is over-
loaded.

6.1. Submodules 25

QMKPy, Release 1.2.0

Return type
list of float

qmkpy.util.get_unassigned_items(assignments: Union[array, Iterable[int]])→ Iterable[int]
Return the list of unassigned items

Return the list of unassigned items (as their indices) from a given assignment. It can be either in the binary
matrix form or in the chromosome form.

Parameters
assignments (np.array or list of int) – Either a binary matrix of size 𝑁 ×𝐾 which repre-
sents the assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗. Or
assignments in the chromosome form, which is a list of length 𝑁 where 𝑐𝑖 = 𝑘 means that item
𝑖 is assigned to knapsack 𝑘. If the item is not assigned, we set 𝑐𝑖 = −1.

Returns
unassigned_items – List of the indices of the unassigned items.

Return type
list of int

qmkpy.util.value_density(profits: array, weights: Iterable[float], assignments: Union[array, Iterable[int]],
reduced_output: bool = False)→ Iterable[float]

Calculate the value density given a set of selected objects.

This function calculates the value density of item 𝑖 for knapsack 𝑘 and given assignments 𝒜𝑘 according to

vd𝑖(𝒜𝑘) =
1

𝑤𝑖

⎛⎜⎜⎝𝑝𝑖 +
∑︁
𝑗∈𝒜𝑘
𝑗 ̸=𝑖

𝑝𝑖𝑗

⎞⎟⎟⎠
This value indicates the profit (per item weight) that is gained by adding the item 𝑖 to knapsack 𝑘 when the items
𝒜𝑘 are already assigned. It is adapted from the notion of the value density from (Hiley, Julstrom, 2006).

When a full array of assignements is used as input, a full array of value densities is returned as

vd(𝒜) =

⎛⎜⎜⎜⎝
vd1(𝒜1) vd1(𝒜2) · · · vd1(𝒜𝐾)
vd2(𝒜1) vd2(𝒜2) · · · vd2(𝒜𝐾)

... · · ·
. . .

...
vd𝑁 (𝒜1) vd𝑁 (𝒜2) · · · vd𝑁 (𝒜𝐾)

⎞⎟⎟⎟⎠
When the parameter reduced_output is set to True only a subset with the values of the unassigned items is
returned.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 .

• weights (list of float) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• assignments (np.array or list of int) – Binary matrix of size 𝑁 ×𝐾 which represents
the final assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack
𝑗. Alternatively, one can provide a list of the indices of selected items. In this case, it is
assumed that these items are assigned to all knapsacks.

• reduced_output (bool, optional) – If set to True only the value density values of the unas-
signed objects are returned. Additionally, the indices of the unassigned items are returned
as a second output.

26 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

Returns

• densities (np.array) – Array that contains the value densities of the objects. The length
is equal to 𝑁 , if reduced_output is False. If reduced_output is True, the return has
length len(densities)==len(unassigned_items). The number of dimensions is equal
to the number of dimensions of assignments. Each column corresponds to a knapsack. If
only a flat array is used as input, a flat array is returned.

• unassigned_items (list) – List of the indices of the unassigned items. This is only returned
when reduced_output is set to True.

6.2 Module contents

class qmkpy.QMKProblem(profits: Union[array, Iterable[Iterable]], weights: Iterable[float], capacities:
Iterable[float], algorithm: Optional[Callable] = None, args: Optional[tuple] = None,
assignments: Optional[array] = None, name: Optional[str] = None)

Bases: object

Base class to represent a quadratic multiple knapsack problem.

This class defines a standard QMKP with 𝑁 items and 𝐾 knapsacks.

profits

Symmetric matrix of size 𝑁 ×𝑁 that contains the (joint) profit values 𝑝𝑖𝑗 . The profit of the single items
𝑝𝑖 corresponds to the main diagonal elements, i.e., 𝑝𝑖 = 𝑝𝑖𝑖.

Type
np.array

weights

List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

Type
list of float

capacities

Capacities of the knapsacks. The number of knapsacks 𝐾 is determined as K=len(capacities).

Type
list of float

algorithm

Function that is used to solve the QMKP. It needs to follow the argument order algorithm(profits,
weights, capacities, ...).

Type
Callable, optional

args

Optional tuple of additional arguments that are passed to algorithm .

Type
tuple, optional

assignments

Binary matrix of size 𝑁 × 𝐾 which represents the final assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1,
element 𝑖 is assigned to knapsack 𝑗. This attribute is overwritten when calling solve().

6.2. Module contents 27

QMKPy, Release 1.2.0

Type
np.array, optional

name

Optional name of the problem instance

Type
str, optional

classmethod load(fname: str, strategy: str = 'numpy')
Load a QMKProblem instance

This functions allows loading a previously saved QMKProblem instance. The save() method provides a
way of saving a problem.

See also:

save()
Method to save a QMKProblem instance which can then be loaded.

Parameters

• fname (str) – Filepath of the saved model

• strategy (str) – Strategy that is used to store the model. Valid choices are (case-
insensitive):

– numpy: Save the individual arrays of the model using the np.savez_compressed()
function.

– pickle: Save the whole object using Pythons pickle module

– txt: Save the arrays of the model using the text-based format established by Billionnet
and Soutif.

– json: Save the arrays of the model using the JSON format.

Returns
problem – Loaded problem instance

Return type
QMKProblem

save(fname: Union[str, bytes, PathLike], strategy: str = 'numpy')→ NoReturn
Save the QMKP instance

Save the profits, weights, and capacities of the problem. There exist different strategies that are explained
in the strategy parameter.

See also:

load()
For loading a saved model.

Parameters

• fname (str or PathLike) – Filepath of the model to be saved at

• strategy (str) – Strategy that is used to store the model. Valid choices are (case-
insensitive):

28 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

– numpy: Save the individual arrays of the model using the np.savez_compressed()
function. See also qmkpy.io.save_problem_numpy().

– pickle: Save the whole object using Pythons pickle module. See also qmkpy.io.
save_problem_pickle().

– txt: Save the arrays of the model using the text-based format established by Billionnet
and Soutif. See also qmkpy.io.save_problem_txt().

– json: Save the arrays of the model using the JSON format.

Return type
None

solve(algorithm: Optional[Callable] = None, args: Optional[tuple] = None)→ Tuple[array, float]
Solve the QMKP

Solve the QMKP using algorithm. This function both returns the optimal assignment and the total result-
ing profit. This method also automatically sets the solution to the object’s attribute assignments.

Parameters

• algorithm (Callable, optional) – Function that is used to solve the QMKP. It needs to
follow the argument order algorithm(profits, weights, capacities, ...). If it
is None, the object attribute algorithm is used.

• args (tuple, optional) – Optional tuple of additional arguments that are passed to
algorithm. If it is None, the object attribute args is used.

Returns

• assignments (np.array) – Binary matrix of size 𝑁 × 𝐾 which represents the final as-
signments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

• total_profit (float) – Final total profit for the found solution.

qmkpy.assignment_from_chromosome(chromosome: Iterable[int], num_ks: int)→ array
Return the assignment matrix from a chromosome

Return the binary assignment matrix that corresponds to the chromosome. For more details about the connection
between assignment matrix and chromosome check chromosome_from_assignment().

See also:

chromosome_from_assignment()
For more details on the connection between assignment matrix and chromosome.

Parameters

• chromosome (np.array or list of int) – Chromosome version of assignments, which
is a list of length 𝑁 where 𝑐𝑖 = 𝑘 means that item 𝑖 is assigned to knapsack 𝑘. If the item is
not assigned, we set 𝑐𝑖 = −1.

• num_ks (int) – Number of knapsacks 𝐾.

Returns
assignments – Binary matrix of size 𝑁 ×𝐾 which represents the final assignments of items to
knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Return type
np.array

6.2. Module contents 29

QMKPy, Release 1.2.0

qmkpy.chromosome_from_assignment(assignments: array)→ Iterable[int]
Return the chromosome from an assignment matrix

The chromosome version of assignments is a list of length 𝑁 where 𝑐𝑖 = 𝑘 means that item 𝑖 is assigned to
knapsack 𝑘. If the item is not assigned, we set 𝑐𝑖 = −1.

Example

Assume that we have 4 items and 3 knapsacks. Let Items 1 and 4 be assigned to Knapsack 1, Item 2 is assigned
to Knapsack 3 and Item 3 is not assigned. In the binary representation, this is

𝐴 =

⎛⎜⎜⎝
1 0 0
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎠
The corresponding chromosome is

𝐶(𝐴) =
(︀
1 3 0 1

)︀
However, in the 0-index based representation in Python, this function will return

chromosome_from_assignment(A) = [0, 2, -1, 0]

as the chromosome.

Parameters
assignments (np.array) – Binary matrix of size𝑁×𝐾 which represents the final assignments
of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Returns
chromosome – Chromosome version of assignments, which is a list of length 𝑁 where 𝑐𝑖 = 𝑘
means that item 𝑖 is assigned to knapsack 𝑘. If the item is not assigned, we set 𝑐𝑖 = −1.

Return type
np.array

qmkpy.total_profit_qmkp(profits: array, assignments: array)→ float
Calculate the total profit for given assignments.

This function calculates the total profit of a QMKP for a given profit matrix 𝑃 and assignments 𝒜 as

𝐾∑︁
𝑢=1

⎛⎜⎜⎝∑︁
𝑖∈𝒜𝑢

𝑝𝑖 +
∑︁
𝑗∈𝒜𝑢
𝑗 ̸=𝑖

𝑝𝑖𝑗

⎞⎟⎟⎠
where 𝒜𝑢 is the set of items that are assigned to knapsack 𝑢.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 . The profit of the single items 𝑝𝑖 corresponds to the main diagonal elements, i.e.,
𝑝𝑖 = 𝑝𝑖𝑖.

• assignments (np.array) – Binary matrix of size 𝑁 × 𝐾 which represents the final as-
signments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack 𝑗.

Returns
Value of the total profit

30 Chapter 6. qmkpy package

QMKPy, Release 1.2.0

Return type
float

qmkpy.value_density(profits: array, weights: Iterable[float], assignments: Union[array, Iterable[int]],
reduced_output: bool = False)→ Iterable[float]

Calculate the value density given a set of selected objects.

This function calculates the value density of item 𝑖 for knapsack 𝑘 and given assignments 𝒜𝑘 according to

vd𝑖(𝒜𝑘) =
1

𝑤𝑖

⎛⎜⎜⎝𝑝𝑖 +
∑︁
𝑗∈𝒜𝑘
𝑗 ̸=𝑖

𝑝𝑖𝑗

⎞⎟⎟⎠
This value indicates the profit (per item weight) that is gained by adding the item 𝑖 to knapsack 𝑘 when the items
𝒜𝑘 are already assigned. It is adapted from the notion of the value density from (Hiley, Julstrom, 2006).

When a full array of assignements is used as input, a full array of value densities is returned as

vd(𝒜) =

⎛⎜⎜⎜⎝
vd1(𝒜1) vd1(𝒜2) · · · vd1(𝒜𝐾)
vd2(𝒜1) vd2(𝒜2) · · · vd2(𝒜𝐾)

... · · ·
. . .

...
vd𝑁 (𝒜1) vd𝑁 (𝒜2) · · · vd𝑁 (𝒜𝐾)

⎞⎟⎟⎟⎠
When the parameter reduced_output is set to True only a subset with the values of the unassigned items is
returned.

Parameters

• profits (np.array) – Symmetric matrix of size 𝑁 × 𝑁 that contains the (joint) profit
values 𝑝𝑖𝑗 .

• weights (list of float) – List of weights 𝑤𝑖 of the 𝑁 items that can be assigned.

• assignments (np.array or list of int) – Binary matrix of size 𝑁 ×𝐾 which represents
the final assignments of items to knapsacks. If 𝑎𝑖𝑗 = 1, element 𝑖 is assigned to knapsack
𝑗. Alternatively, one can provide a list of the indices of selected items. In this case, it is
assumed that these items are assigned to all knapsacks.

• reduced_output (bool, optional) – If set to True only the value density values of the unas-
signed objects are returned. Additionally, the indices of the unassigned items are returned
as a second output.

Returns

• densities (np.array) – Array that contains the value densities of the objects. The length
is equal to 𝑁 , if reduced_output is False. If reduced_output is True, the return has
length len(densities)==len(unassigned_items). The number of dimensions is equal
to the number of dimensions of assignments. Each column corresponds to a knapsack. If
only a flat array is used as input, a flat array is returned.

• unassigned_items (list) – List of the indices of the unassigned items. This is only returned
when reduced_output is set to True.

6.2. Module contents 31

QMKPy, Release 1.2.0

32 Chapter 6. qmkpy package

CHAPTER

SEVEN

REFERENCES

33

QMKPy, Release 1.2.0

34 Chapter 7. References

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

35

QMKPy, Release 1.2.0

36 Chapter 8. Indices and tables

BIBLIOGRAPHY

[AGH22] Méziane Aïder, Oussama Gacem, and Mhand Hifi. “Branch and solve strategies-based algorithm for the
quadratic multiple knapsack problem”, Journal of the Operational Research Society, vol. 73, no. 3, pp. 540-
557. (2022) DOI: 10.1080/01605682.2020.1843982

[HJ06] Amanda Hiley and Bryant A. Julstrom. “The quadratic multiple knapsack problem and three heuristic ap-
proaches to it”, Proceedings of the 8th annual conference on Genetic and evolutionary computation (GECCO
‘06), pp. 547–552. (2006) DOI: 10.1145/1143997.1144096

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. “Knapsack Problems”, Springer Berlin Heidelberg.
(2004) DOI: 10.1007/978-3-540-24777-7

37

QMKPy, Release 1.2.0

38 Bibliography

PYTHON MODULE INDEX

q
qmkpy, 27
qmkpy.algorithms, 13
qmkpy.checks, 15
qmkpy.io, 17
qmkpy.qmkp, 21
qmkpy.util, 24

39

QMKPy, Release 1.2.0

40 Python Module Index

INDEX

A
algorithm (qmkpy.qmkp.QMKProblem attribute), 21
algorithm (qmkpy.QMKProblem attribute), 27
args (qmkpy.qmkp.QMKProblem attribute), 21
args (qmkpy.QMKProblem attribute), 27
assignment_from_chromosome() (in module qmkpy),

29
assignment_from_chromosome() (in module

qmkpy.util), 24
assignments (qmkpy.qmkp.QMKProblem attribute), 21
assignments (qmkpy.QMKProblem attribute), 27

C
capacities (qmkpy.qmkp.QMKProblem attribute), 21
capacities (qmkpy.QMKProblem attribute), 27
check_dimensions() (in module qmkpy.checks), 15
chromosome_from_assignment() (in module qmkpy),

29
chromosome_from_assignment() (in module

qmkpy.util), 24
constructive_procedure() (in module

qmkpy.algorithms), 13

F
fcs_procedure() (in module qmkpy.algorithms), 13

G
get_empty_knapsacks() (in module qmkpy.util), 25
get_remaining_capacities() (in module qmkpy.util),

25
get_unassigned_items() (in module qmkpy.util), 26

I
is_binary() (in module qmkpy.checks), 15
is_feasible_solution() (in module qmkpy.checks),

16
is_symmetric_profits() (in module qmkpy.checks),

16

L
load() (qmkpy.qmkp.QMKProblem class method), 22

load() (qmkpy.QMKProblem class method), 28
load_problem_json() (in module qmkpy.io), 17
load_problem_numpy() (in module qmkpy.io), 17
load_problem_pickle() (in module qmkpy.io), 17
load_problem_txt() (in module qmkpy.io), 18

M
module

qmkpy, 27
qmkpy.algorithms, 13
qmkpy.checks, 15
qmkpy.io, 17
qmkpy.qmkp, 21
qmkpy.util, 24

N
name (qmkpy.qmkp.QMKProblem attribute), 22
name (qmkpy.QMKProblem attribute), 28

P
profits (qmkpy.qmkp.QMKProblem attribute), 21
profits (qmkpy.QMKProblem attribute), 27

Q
QMKProblem (class in qmkpy), 27
QMKProblem (class in qmkpy.qmkp), 21
qmkpy

module, 27
qmkpy.algorithms

module, 13
qmkpy.checks

module, 15
qmkpy.io

module, 17
qmkpy.qmkp

module, 21
qmkpy.util

module, 24

R
random_assignment() (in module qmkpy.algorithms),

14

41

QMKPy, Release 1.2.0

round_robin() (in module qmkpy.algorithms), 14

S
save() (qmkpy.qmkp.QMKProblem method), 22
save() (qmkpy.QMKProblem method), 28
save_problem_json() (in module qmkpy.io), 18
save_problem_numpy() (in module qmkpy.io), 19
save_problem_pickle() (in module qmkpy.io), 19
save_problem_txt() (in module qmkpy.io), 19
solve() (qmkpy.qmkp.QMKProblem method), 23
solve() (qmkpy.QMKProblem method), 29

T
total_profit_qmkp() (in module qmkpy), 30
total_profit_qmkp() (in module qmkpy.qmkp), 23

V
value_density() (in module qmkpy), 31
value_density() (in module qmkpy.util), 26

W
weights (qmkpy.qmkp.QMKProblem attribute), 21
weights (qmkpy.QMKProblem attribute), 27

42 Index

	Installation
	Getting Started
	Basic Usage
	Saving a Problem Instance
	Loading a Saved QMKProblem Instance

	Code Conventions
	Basic Arrays
	Mathematical Description
	Implementation

	Argument Order
	Alternative Representation of the Assignment Matrix

	Implementing a Novel Algorithm
	Example
	Algorithm Implementation
	Using the Algorithm

	Contributing a New Algorithm to the Package

	Datasets
	Research Paper Repository

	qmkpy package
	Submodules
	qmkpy.algorithms module
	qmkpy.checks module
	qmkpy.io module
	qmkpy.qmkp module
	qmkpy.util module

	Module contents

	References
	Indices and tables
	Bibliography
	Python Module Index
	Index

